15 research outputs found

    Classification and nomenclature of all human homeobox genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.</p> <p>Results</p> <p>We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive <it>DUX1 </it>to <it>DUX5 </it>homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.</p> <p>Conclusion</p> <p>We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.</p

    Novel Role for p110β PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells

    Get PDF
    We thank Anna-Lena Berg (AstraZeneca, Lund) and Cheryl Scudamore (MRC, Harwell, UK) for histological analysis, Julie Foster (Barts Cancer Institute, London) for CT scans, Johan Swinnen and Frank Claessens (Leuven University, Belgium) for discussion and AR-luciferase reporter plasmids, Florian Guillou (INRA, CNRS, Université de Tours, France) for the AMH-Cre mouse line and Laura Milne (MRC Centre for Reproductive Health, The University of Edinburgh) for technical support. We thank the members of the Cell Signalling group for critical input.International audienceThe organismal roles of the ubiquitously expressed class I PI3K isoform p110β remain largely unknown. Using a new kinase-dead knockin mouse model that mimics constitutive pharmacological inactivation of p110β, we document that full inactivation of p110β leads to embryonic lethality in a substantial fraction of mice. Interestingly, the homozygous p110β kinase-dead mice that survive into adulthood (maximum ~26% on a mixed genetic background) have no apparent phenotypes, other than subfertility in females and complete infertility in males. Systemic inhibition of p110β results in a highly specific blockade in the maturation of spermatogonia to spermatocytes. p110β was previously suggested to signal downstream of the c-kit tyrosine kinase receptor in germ cells to regulate their proliferation and survival. We now report that p110β also plays a germ cell-extrinsic role in the Sertoli cells (SCs) that support the developing sperm, with p110β inactivation dampening expression of the SC-specific Androgen Receptor (AR) target gene Rhox5, a homeobox gene critical for spermatogenesis. All extragonadal androgen-dependent functions remain unaffected by global p110β inactivation. In line with a crucial role for p110β in SCs, selective inactivation of p110β in these cells results in male infertility. Our study is the first documentation of the involvement of a signalling enzyme, PI3K, in the regulation of AR activity during spermatogenesis. This developmental pathway may become active in prostate cancer where p110β and AR have previously been reported to functionally interac

    Homeodomain proteins: an update

    Get PDF
    corecore